La selección del modo de potencia permite cambiar la generación de potencia del motor según la situación de conducción.
El ABS (Anti-lock Brake System) garantiza un frenado estable evitando el bloqueo de las ruedas durante el frenado.
El embrague con funciones de asistencia y deslizamiento, basado en la tecnología de competición, actúa como limitador de par inverso y servomecanismo para facilitar el accionamiento de la palanca de embrague.
Las válvulas de mariposa dobles permiten una mayor potencia y maniobrabilidad mediante un segundo conjunto de válvulas de mariposa controladas por la ECU.
El indicador de marcha económica es una marca que aparece en el panel de instrumentos para indicar un consumo de combustible favorable y promover un andar eficiente.
ERGO-FIT es un sistema de interfaz que permite que una amplia serie de conductores se sientan que son uno con su máquina.
La suspensión trasera con sistema de bieletas back-link horizontal tiene el amortiguador dispuesto en sentido horizontal, lo cual contribuye significativamente al uso eficiente del espacio y la centralización de la masa.
Combined with Kawasaki’s proprietary dynamic modelling program, input from the IMU (Inertial Measurement Unit) enables even more precise chassis orientation awareness, the key to bringing Kawasaki’s electronics to the next level.
KCMF (función de gestión de giro de Kawasaki) controla varios sistemas de gestión electrónicos del chasis y el motor para facilitar un giro sin problemas.
El KTRC (Kawasaki TRaction Control) le da más seguridad al conductor al prevenir el deslizamiento de la rueda trasera en diversas superficies.
El KIBS (Kawasaki Intelligent anti-lock Brake System) es un sistema de frenado de alta precisión, alta eficiencia y sensación natural diseñado específicamente para modelos superdeportivos.
Modelo 2017 mostrado
4 tiempos, 4 cilindros, DOHC, 16 válvulas, refrigeración líquida
1043 cc
77,0 x 56,0 mm
11.8:1
DFI® con cuerpos de admisión Keihin (4) de 38 mm y mariposas auxiliares ovales
TCBI con avance digital
Cambio de marcha de 6 velocidades
Horquilla invertida de 41 mm con amortiguación de rebote y compresión continua, precarga del muelle ajustable/12 cm
Monoamortiguador horizontal con amortiguación de rebote continua, precarga del muelle ajustable de forma remota/14 cm
120/70 ZR17
190/50 ZR17
62,23°/10,16 cm
12,94 cm
144 cm
121,8 kg/m a 7.300 rpm
210 cm
78,9 cm
118,6 / 123,4 cm
81,5 cm
234 kg**
18,9 lt
Cadena sellada
Control de tracción Kawasaki (KTRC), sistema de frenos anti-bloqueo inteligente Kawasaki (KIBS), Modo de Potencia, función de gestión de curvas de Kawasaki (KCMF)
Eje de aluminio
Negro Metallic Spark/Gris Metallic Matte Carbon
12, 24, 36 o 48 meses
Discos estilo lobulados dobles de 300 mm con calibradores monobloque de 4 pistones con montaje radial doble, ABS
Disco tipo lobulado único de 250 mm con calibrador de un pistón, ABS
Garantía limitada de 12 meses
**Peso en vacío incluye todos los materiales y fluidos necesarios para operar correctamente, tanque lleno de combustible (con una capacidad de más de 90%) y una caja de herramientas (si es suministrada).
Las especificaciones están sujetas a cambio
KAWASAKI SE PREOCUPA: Lleve siempre puesto un casco proteccion para los ojos, y ropa adecuada. Nunca conduzca bajo la influencia de las drogas o el alcohol. Lea el Manual de usuario y todas las advertencies del producto. Piloto profesional en circuito cerrado. ©2019 Kawasaki Motors Corp., U.S.A.
Los modos de potencia le permiten al conductor optar entre potencia máxima y baja potencia, y realizar la selección de manera sencilla. Mientras que el modo de potencia máxima no presenta restricciones, el modo de baja potencia permite alcanzar hasta el 75-80% de la capacidad máxima. La respuesta también es más suave en el modo de baja potencia. Los conductores pueden optar entre el modo de baja potencia para condiciones de lluvia o entornos urbanos, y el modo de potencia máxima para un andar deportivo.
La selección del modo de potencia está disponible en la Ninja ZX-14R / ZZR1400, la Versys 1000 y otros modelos clave, y ofrece un total de ocho combinaciones para una amplia variedad de situaciones de conducción cuando se la utiliza junto con el sistema de control de tracción KTRC de 3 modos (más el modo desactivado): KTRC modo 1/2/3+desactivado x modo de potencia baja/máxima. Por ejemplo, un conductor experimentado que prefiera un andar deportivo sobre pavimento seco podría seleccionar el modo de potencia máxima con el modo 1 del KTRC. En una superficie mojada o resbaladiza, el modo de baja potencia con el KTRC en el modo 3 reduciría al máximo el riesgo de deslizamiento de neumáticos, lo cual se suma al alto nivel de seguridad en el andar que brinda la respuesta de aceleración más gradual.
El accionamiento intenso y repentino de los frenos, o el frenado en superficies de poco agarre (bajo coeficiente de fricción) como bocas de alcantarilla o asfalto mojados, pueden hacer que una o ambas ruedas de la motocicleta se bloqueen y patinen. El ABS se desarrolló para prevenir tales incidentes. Los sistemas ABS de Kawasaki se controlan mediante programas de alta confiabilidad y precisión desarrollados sobre la base de pruebas exhaustivas en diversas situaciones de conducción. Al asegurar un frenado estable, se incrementa la sensación de seguridad del conductor y se mejora la experiencia de conducción.
También hay disponibles sistemas ABS especiales que satisfacen los requerimientos particulares de ciertos conductores. Por ejemplo, el KIBS (Kawasaki Intelligent anti-lock Brake System) es un sistema de frenado de alta precisión diseñado específicamente para modelos superdeportivos que le permite a una gran variedad de conductores disfrutar de un andar deportivo. Además, al interconectar los frenos delantero y trasero, el sistema K-ACT (Kawasaki Advanced Coactive-braking Technology) ABS mejora la confiabilidad de los modelos de paseo más pesados. Kawasaki trabaja permanentemente en el desarrollo de otros sistemas ABS avanzados.
Diseñado sobre la base de la experiencia en actividades de competición, el embrague con funciones de asistencia y deslizamiento emplea dos tipos de levas (una de asistencia y una deslizante) para mover el cubo del embrague y separar o acoplar los discos.
En condiciones normales de funcionamiento, la leva de asistencia actúa como servomecanismo que empuja el cubo del embrague contra el plato de presión para comprimir los discos de embrague. Esto permite reducir la carga total que soportan los resortes del embrague y, por consiguiente, el esfuerzo requerido para accionar la palanca de embrague.
Cuando se produce un frenado excesivo del motor como consecuencia de rebajes rápidos (o un rebaje accidental), la leva deslizante fuerza la separación del cubo del embrague y el plato de presión. Esto alivia la presión que se ejerce sobre los discos de embrague para reducir el par inverso y evitar que el neumático trasero salte o patine.
Los últimos modelos de motocicletas deportivas a menudo emplean válvulas de mariposa con cuerpos de gran diámetro para generar altos niveles de potencia. No obstante, con las válvulas de diámetro grande, cuando el conductor acelera de repente, la respuesta de un par motor sin restricciones no es muy suave que digamos y, con frecuencia, supera lo que el conductor puede controlar. La tecnología de doble válvula de mariposa fue diseñada para domar los motores de alta potencia y mejorar el desempeño.
En los modelos con inyección de combustible, los cuerpos de mariposa suelen tener una sola válvula de mariposa por cilindro. En los modelos con doble válvula de mariposa, hay dos válvulas de mariposa por cilindro: además de las válvulas principales, que están físicamente conectadas al puño del acelerador y son controladas por el conductor, hay un segundo conjunto de válvulas que se abren y cierran según lo que les ordena la ECU, que regula en forma precisa el caudal de aire de admisión para garantizar una respuesta natural y lineal. Al hacer más gradual el paso de aire a través de los cuerpos de mariposa, se logra una combustión más eficiente y se incrementa la potencia.
Al igual que otras tecnologías de control del motor de Kawasaki, las válvulas de mariposa dobles fueron diseñadas con la idea de "seguir la intención del conductor, brindándole un apoyo que se sienta natural". Se incluyen en varios modelos Kawasaki.
Al utilizar un control de motor electrónico de alta precisión, los modelos Kawasaki pueden lograr un alto nivel de eficiencia en el consumo de combustible. No obstante, el consumo de combustible se ve afectado significativamente por el uso del acelerador, la selección de marchas y otros elementos que controla el conductor. El indicador de marcha económica es una función que le avisa al conductor cuando hay un bajo consumo de combustible gracias a las condiciones del andar actual. El sistema supervisa el consumo de combustible de manera continua, independientemente de la velocidad del vehículo, la posición del acelerador y otras condiciones de marcha. Cuando el consumo de combustible es bajo para una velocidad determinada (alta eficiencia en el consumo de combustible), la pantalla LCD del panel de instrumentos muestra la marca "ECO". El consumo de combustible puede reducirse si se conduce de modo tal que la marca "ECO" permanezca encendida.
Si bien la velocidad efectiva del vehículo y el motor puede variar según el modelo, el conductor puede prestar atención a las condiciones que hacen que aparezca la marca "ECO" para mejorar la eficiencia del consumo de combustible e incrementar la autonomía del vehículo. Además, el ahorro de combustible también ayuda a reducir el impacto ambiental.
Un ajuste adecuado es clave para la comodidad y control del conductor. Sin embargo, el ajuste ideal varía de un conductor a otro en función de su físico y estilo de conducción. ERGO-FIT es un sistema de interfaz diseñado para permitir que los conductores encuentren su posición ideal de conducción. Es posible ajustar varios puntos de la interfaz del chasis (el manillar, apoyapiés y asiento, etc.) mediante una combinación de piezas intercambiables y piezas con posiciones ajustables. Esto permite que un gran número de conductores encuentren una posición de conducción que ofrezca comodidad y control. Sintiendo que son uno con su máquina, podrán experimentar lo divertidas y reconfortantes de conducir que son las máquinas Kawasaki.
*Las piezas ajustables y el rango de ajustabilidad varían en función del modelo.
A diferencia de la tradicional suspensión trasera Uni-Trak de Kawasaki, con el amortiguador dispuesto verticalmente, en la suspensión trasera con sistema de bieletas back-link horizontal, el amortiguador está prácticamente horizontal. Esta disposición de la suspensión, original de Kawasaki, contribuye en gran medida a centralizar la masa del vehículo, ya que el amortiguador se encuentra muy cerca del centro de gravedad de la motocicleta. Además, como no hay acoplamiento o amortiguador que sobresalga por debajo del basculante, queda espacio libre para una precámara de escape más grande (una cámara de expansión del escape situada inmediatamente antes del silenciador). Con una precámara más grande, se puede reducir el volumen del silenciador y llevar los componentes pesados del sistema de escape más cerca del centro de la motocicleta, la cual contribuye aun más a la centralización de la masa. El resultado es una enorme mejoría en la maniobrabilidad.
Otro beneficio es que el amortiguador queda lejos del calor del escape. Como es más difícil que el calor del sistema de escape afecte de manera adversa la presión del gas y el aceite, el desempeño de la suspensión es más estable. La suspensión trasera con sistema de bieletas back-link horizontal ofrece muchos beneficios secundarios como este.
El punto fuerte de la electrónica de vanguardia de Kawasaki ha sido siempre la programación sumamente sofisticada que, utilizando un hardware mínimo, proporciona a la ECU una imagen precisa en tiempo real de lo que está haciendo el chasis. El programa de modelado dinámico de propiedad exclusiva de Kawasaki realiza un uso experto del modelo de neumático de fórmula mágica a medida que examina los cambios en múltiples parámetros, permitiendo tener en cuenta las condiciones cambiantes de la carretera y los neumáticos.
La adición de una IMU (Unidad de medición inercial) permite monitorizar la inercia a lo largo de 6 grados de libertad (DOF). Se mide la aceleración a lo largo de los ejes longitudinales, transversales y verticales, junto con las tasas de cabeceo y balanceo. La velocidad de giro se calcula mediante la ECU. Esta retroalimentación adicional contribuye a disponer de una imagen en tiempo real aún más clara de la orientación del chasis, lo que posibilita una gestión aún más precisa para un control al límite.
Con la adición de la IMU y la versión más evolucionada del software de modelado avanzado de Kawasaki, la tecnología de control del chasis y el motor electrónico de Kawasaki avanza al siguiente nivel —cambiando desde los sistemas de tipo ajuste y tipo reacción a los sistemas de tipo retroalimentación— para ofrecer unos niveles de emoción en el pilotaje aún mayores.
Con la última evolución del software de modelado avanzado de Kawasaki y la información de una IMU (unidad de medida de inercia) compacta que incluso proporciona una imagen en tiempo real más clara de la orientación del chasis, KCMF supervisa los parámetros de chasis y motor en todo el giro, desde la entrada, pasando por el vértice hasta la salida, modulando la fuerza de freno y la potencia del motor para facilitar una suave transición de la acelerada a la frenada y de vuelta, y para ayudar a los conductores a realizar la trazada correcta. Los sistemas que KCMF supervisa varían según el modelo, pero pueden incluid:
Cuando se acelera sobre una superficie resbaladiza, es muy probable que la rueda trasera patine (es decir, que gire más rápido que la delantera). El KTRC se diseñó para evitar un deslizamiento tal que provoque la pérdida de control de la motocicleta. Así como el ABS evita el bloqueo de las ruedas al frenar, este sistema de control de tracción original de Kawasaki previene el deslizamiento del neumático trasero. El hecho de saber que el sistema intervendrá para prevenir un deslizamiento repentino de la rueda, por ejemplo, si el pavimento termina en forma abrupta durante un viaje de paseo, hace que los conductores se sientan mucho más seguros.
El KTRC emplea sensores de velocidad de neumáticos para controlar la velocidad a la que giran las ruedas delantera y trasera. Al detectar el deslizamiento de un neumático, la potencia del motor se reduce para que el neumático recupere el agarre. El KTRC también ayuda a recuperar la tracción del neumático trasero cuando se pierde agarre en forma momentánea, por ejemplo, al pasar sobre una boca de alcantarilla mojada.
El KTRC controla el deslizamiento de 3 maneras diferentes: regulando la sincronización de encendido, el volumen de combustible y, a través de las válvulas de mariposa auxiliares, el volumen de admisión de aire. Este control tripartito es lo que permite que el sistema funcione de manera casi imperceptible y se sienta tan natural.
Desde el punto de vista tecnológico, es posible hacer un sistema de control de tracción que permita recuperarse de un deslizamiento sin que el conductor alcance a darse cuenta de que patinó un neumático. Sin embargo, el KTRC les hace saber a los conductores que la superficie es resbaladiza retardando un instante la intervención de manera intencional. Esto se logra, en primer lugar, transmitiendo una representación precisa de las condiciones actuales de la carretera y lo que la motocicleta está haciendo; y, en segundo lugar, garantizando que los sistemas brinden apoyo a los conductores. Esta es la filosofía que impulsa el desarrollo de la tecnología Kawasaki.
Kawasaki desarrolló el KIBS teniendo en cuenta las características de maniobrabilidad particulares de las motocicletas superdeportivas, a fin de garantizar un frenado de alta eficiencia e intrusión mínima para un andar deportivo exigente. Es el primer sistema de frenado de producción masiva que conecta la ECU (Unidad de Control Electrónico) del ABS con la ECU del motor.
Además de la velocidad de los neumáticos delantero y trasero, el KIBS supervisa la presión hidráulica de la pinza de freno delantera, la posición del acelerador, la velocidad del motor, el accionamiento del embrague y la posición de las marchas. Esta información diversa se analiza para obtener la presión hidráulica ideal del freno delantero. Este control preciso evita las gotas grandes de líquido hidráulico que se ven en los sistemas ABS convencionales. Además, se puede suprimir la tendencia de que en los modelos superdeportivos se levante la rueda trasera al frenar en forma abrupta y mantener el control del freno trasero al hacer rebajes.